Luces y sombras en la incorporaci??n de la Directiva de servicios

download pdf Luces y sombras en la incorporaci??n de la Directiva de servicios, دانلود Luces y sombras en la incorporaci??n de la Directiva de servicios,Mercedes Fuertes, کتاب های Mercedes Fuertes,Escuela de Administraci??n P??blica de Catalu??a 2011-01-12, لیست کتاب های Escuela de Administraci??n P??blica de Catalu??a 2011-01-12,WorldCat, کتاب های WorldCat

گت بلاگز Internet Mapping chemical structure-activity information of HAART-drug cocktails over complex networks of AIDS epidemiology and socioeconomic data of U.S. counties / دانلود فایل

مشخصات کلی Mapping chemical structure-activity information of HAART-drug cocktails over complex networks of AIDS epidemiology and socioeconomic data of U.S. counties

نویسنده کتاب (Author):

Herrera Ibatá, Diana María; Pazos, A.; Orbegozo-Medina, Ricardo Alfredo; Romero-Durán, Francisco Javier; González-Díaz, Humberto

انتشارات (Publisher):

Elsevier 2015-04-24

ویرایش و نوع فایل (Edition/Format):

 Downloadable article : English

منبع (Database):

WorldCat

عنوان ژورنال (Publication):

herrera-ibata-dm-pazos-a-orbegozo-medina-ra-romero-duran-fj-gonzalez-diaz-h-mapping-chemical-structure-activity-information-of-haart-drug-cocktails-over-complex-networks-o

موضوع (Subject):

Urban influence code       AIDS epidemiology       Box–Jenkins operators       View all subjects      

توضیحات خلاصه (Summary):

[Abstract] Using computational algorithms to design tailored drug cocktails for highly active antiretroviral therapy (HAART) on specific populations is a goal of major importance for both pharmaceutical industry and public health policy institutions. New combinations of compounds need to be predicted in order to design HAART cocktails. On the one hand, there are the biomolecular factors related to the drugs in the cocktail (experimental measure, chemical structure, drug target, assay organisms, etc.); on the other hand, there are the socioeconomic factors of the specific population (income inequalities, employment levels, fiscal pressure, education, migration, population structure, etc.) to study the relationship between the socioeconomic status and the disease. In this context, machine learning algorithms, able to seek models for problems with multi-source data, have to be used. In this work, the first artificial neural network (ANN) model is proposed for the prediction of HAART cocktails, to halt AIDS on epidemic networks of U.S. counties using information indices that codify both biomolecular and several socioeconomic factors. The data was obtained from at least three major sources. The first dataset included assays of anti-HIV chemical compounds released to ChEMBL. The second dataset is the AIDSVu database of Emory University. AIDSVu compiled AIDS prevalence for >2300 U.S. counties. The third data set included socioeconomic data from the U.S. Census Bureau. Three scales or levels were employed to group the counties according to the location or population structure codes: state, rural urban continuum code (RUCC) and urban influence code (UIC). An analysis of >130,000 pairs (network links) was performed, corresponding to AIDS prevalence in 2310 counties in U.S. vs. drug cocktails made up of combinations of ChEMBL results for 21,582 unique drugs, 9 viral or human protein targets, 4856 protocols, and 10 possible experimental measures. The best model found with the o  Read more…

ژانر / فرم:info:eu-repo/semantics/article

موضوع:Internet resource

نوع منبع:Internet Resource, Article

تمام نویسندگان / همکاران: Herrera Ibatá, Diana María; Pazos, A.; Orbegozo-Medina, Ricardo Alfredo; Romero-Durán, Francisco Javier; González-Díaz, Humberto

شناسه OCLC:979265326

Language Note:English

فهرست محتوا:http://hdl.handle.net/2183/17471

نویسنده : getblogs